
活 用

安全指針」を公開

ロボットのクラス分け ~第5章~

クラス分け判定項目	クラス			
クノ人分り刊足項目	クラス1	クラス 2		
本体重量(荷役時最大重量) ※ 積載・牽引とも	50kg未満	50kg以上		
本体移動速度	4km/h未満	4km/h以上		
本体高さ	0.75m未満	0.75m以上		
(伸縮時最高高さ)	重心高さ < h/2	重心高さ≧ h/2		
火気使用	火気使用無し	火気使用有り		
回転体(露出部)の有無 ※ 走行用の車輪に類するものは除く	回転体無し	回転体有り 30A以上		
電気的動力 (商用電源・バッテリー等)	30A未満			
燃料動力 (化石燃料等)	5ℓ未満	5ℓ以上		
操縦資格・免許等 (本体または一部)	無し	有り		
現行法規や規制による届出 (本体または一部)	無し	有り		

ロボット導入時のリスクアセスメント手順

リスクアセスメントシートの事例(搬送ロボットシステム) ~第6章~

	予知される危険・不具合事象		低減方策前		3ステップメソッドに基づくリスク低減方策		低減方策後	
	ア刈される厄快・个具合事家	イメージ	発生 頻度	危害レベル	(©): 採用, ×: 採用見送り)		危害レベル
1	自動搬送台車が作業員に衝突	2	3	本質的安全設計				
				安全防護/付加保護方策	◎障害物センサ(非接触/接触)を設ける ×搬送エリアを強固な金属などで囲う	1	3	
				使用上の注意	◎搬送作業は作業員が退去後の夜間に実施			
2	自動搬送台車が開口へ落下	2	3	本質的安全設計				
				安全防護/付加保護方策	◎障害物センサ(非接触/接触)を設ける ×開□養生をH鋼などで強固に行う	1	3	
				使用上の注意				
3	荷崩れにより近くの作業員に飛来 物落下	2	3	本質的安全設計			3	
				安全防護/付加保護方策	◎障害物センサ(非接触/接触)を設ける ◎床段差センサを設ける ×搬送エリアを強固な金属などで囲う	1		
				使用上の注意	◎搬送作業は作業員が退去後の夜間に実施◎仮設資材/差筋/床段差/床勾配/養生蓋/小落下物がある部分は走行ルートに設定しない			
4	積荷パレットにフォークを差し込み、台車本体側へ引き込む際に、 積荷と本体の間に作業員が挟まれる	2	3	本質的安全設計			3	
				安全防護/付加保護方策	◎挟まれ検知センサを設ける	1		
				使用上の注意	◎フォークを引き込む際に積荷と車体の間に体を入れないことを周知する	*		

特記事項:障害物センサ(非接触/接触)は、エリアセンサ:安全水準SIL2、パンパーセンサ:安全水準SIL3で二重に対策

討フロー の大きさによるクラス分けを行い、そ そのロボットが有する潜在的なリスク ボットの仕様・性能などに基づいて、 採用していること、対象とする建築ロ などの規格や基準に準拠したロ の一般的な安全対策、責任の所在につ いて示すものとして作成した。 ト導入時のリスクアセスメント手順を 本指針の特徴は、ISO121 を設定していることである ボ Ō

必要である。

して導入時の基本対策を行うことが にかかわらず、すべてのロボットに対 労働力不足に対応するための生産性 高齢化、新規入職者の減少などによる 日建連建築ロボット専門部会は二 高さ・ を意図している。 具体的には、ロボッ 重心、 火気使用の有無などの項 トの重量、速度、

応じた必要十分な対策を講じること 建築ロボットには様々な仕様のロボッ があることから、それぞれの特性に

○二五年六月に「建築現場におけるロ

近年、建設業界では技能労働者の

ト活用の安全指針」を公開した。

建築現場における

ロボット導入ガイドライン

建築現場における ロボット活用の安全指針

目をその特性に応じてクラス1とクラ

手段の一つとして建設工事へのロボッ 向上が喫緊の課題となっており、解決

導入が期待されている。

人する際、事故・災害を防止するため

施)を行う必要がある。

ま えた、

クラス

本指針は、建築現場にロボットを導

た場合は、より厳格なリスクアセス クラス2の判定項目が一項目でもあっ ス2に分類する。リスクが比較的高い

ント(リスクの評価、安全対策の実

2025年6月 第1版

一般社団法人 日本建設業連合会 建築技術開発委員会 技術研究部会 建築ロボット専門部会

建築現場におけるロボット活用 の安全指針(2025年6月第1版)

建築技術開発委員会 技術研究部会 建築ロボット専門部会

建築現場におけるロボット導入 ガイドライン(2025年6月第2版)

建築現場における

ロボット活用の安全指針

築現場におけるロボット導入ガイドラ

の事例を掲載し

た。本指針を「建

に参照できるように、リスクアセスメ

本指針では、実際のロボット導入時

イン(第二版)」とともに活用して

第1章 本指針の位置付け

第2章 本指針の適用範囲

第3章 ロボットのリスクアセスメント手順

第4章 ロボットの機種・能力の決定

第5章 クラス分け

第6章 クラス2の項目への対策

第7章 ロボット導入時の基本対策

第8章 現場導入

第9章 用語集

お問い合わせ先

建築・安全環境グループ 電話:03-3551-1118

2025年6月 第2版

一般社団法人 日本建設業連合会

24

25 | ACe 2025.08