LEX西大路ビル

LEX NISHIOJI BUILDING

No. 07-018-2023作成.

新築 事務所・物販・その他

発注者 株式会社協和キャピタル

設計·監理 鴻池組大阪本店一級建築士事務所

株式会社鴻池組 大阪本店

カテゴリー

A. 環境配慮デザイン B. 省エネ・省CO2技術 C. 各種制度活用 D. 評価技術/FB

E. リニューアル F. 長寿命化 G. 建物基本性能確保 H. 生産・施工との連携

I. 周辺・地域への配慮 J. 生物多様性 K. その他

ブランディングと京都らしさを両立する地域性・周辺環境に配慮した複合オフィスビル

設計趣旨

施工

本建物は、多様な歴史や文化・商業・教育施設が集積す る京都市内に位置する、ハイクラス車のディーラー店舗 及びテナントオフィスの複合ビルである。

敷地は北・西の2方向が道路に接し、西側は交通量が多 く幅員の大きい西大路通に面しているため、店舗ショー ルームを北西面交差点に向けガラスボックス状に配置す ることで、周辺への訴求力向上を狙った。

上階のオフィス部分は深い庇を持たせ、景観や居住性に 配慮しつつ、ボリュームをひな壇状にセットバックさせ ることで、軽快でリズム感のある外観を形成するととも に、周辺敷地への採光環境にも配慮した計画とした。

主要なマテリアル・色彩については、建物全体を同系統 でコーディネートすることで、ディーラーのブランディ ングデザインと京都らしい落ち着きと品格ある雰囲気を 両立させる計画とした。

ファサード

〈店舗〉ショールーム

〈店舗〉ホール

〈店舗〉ラウンジ

〈オフィス〉アプローチ

〈オフィス〉エントランス

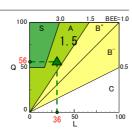
〈オフィス〉EVホール

建物データ

所在地 京都府京都市 2023 年 竣工年

敷地面積 延床面積 11, 223 m²

構造 S造、一部RC造 階数 地下5階、地上1階


3. 208 m

省エネルギー性能

BPI (モデル建物計算法) 0.88 BEI (モデル建物計算法) 0.70 LCCO2削減 21%

Aランク BEE=1.5 2018年度版 自治体提出

CASBEE評価

周辺環境と居住性を考慮した採光計画

外壁開口部にはLow-eガラスを採用するとともに、敷地南側は住宅地 と近接しているため、南側外壁はポツ窓を採用し直射日光による熱 負荷と近隣住民との視線の交錯を軽減する計画とした。主採光面は 北面及び東西面とし、開口部は腰壁から天井までのハイサッシ、ま た深いRC庇を配して、直射日光を遮りつつ安定した自然光を取り込 む計画とした。建物ボリュームをひな壇状にセットバックすること で、北側への日影の影響を緩和し、圧迫感を軽減している。

またショールームという用途上、周辺に向け訴求力を高めるため、 ショールームを構成する西面の大面積ガラスには遮熱フィルムを採 用し、熱負荷の軽減に努めた。

西面開口部·RC庇

地域風土に則したデザイン

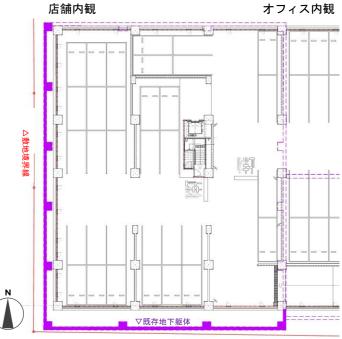
魅力ある街並み・景観を生み出す京都にふさわしい外観デザインとするため、建物全体のイメージを京都らしく庇が軽快に積層さ れる構成とした。RCの庇は軒裏を本実型枠で造り、木目をつけることで和のイメージを演出している。

店舗・オフィスともに木目調のマテリアルとモノトーンな色彩をベースにコーディネートすることで、建物全体に統一感を持たせ るとともに、ディーラーのブランディングデザインと京都らしさを両立させる計画とした。

建物の壁下地の一部に京都産の木材を採用することで、地域産業にも貢献した。

RC庇(本実型枠)

オフィス内観


環境負荷低減の施策・災害対策

建物屋上に太陽光パネルを設置し、電力消費量の削減に寄与する 計画とした。

昨今の電気自動車の普及に追随するように、店舗前の駐車場には 急速充電器を設置し、電気自動車の給電に対応している。

建物配置を決定するに当たり、既存建物の地下躯体の一部を存置 できる計画とし、土留め工事における周辺の住居や道路への影響 を最低限に抑えつつ、新築工事時の建設廃棄物の削減や土留め工 事における建設資材の削減を図った。

建物への受電方式は二回線受電とすることで、災害時や不測の事 態に対する柔軟性をもつ計画とした。

設計担当者

統括:臼井 明夫/建築:井上 和彦、脇 拓也/構造:山本 博之、田中 潤/設備:平田 啓悟

既存地下躯体存置計画

主要な採用技術 (CASBEF進拠)

- まちなみ・景観への配慮(建物配置・ゾーニング計画、景観に配慮した色彩・デザイン) Q3. 2.
- 建物外皮の熱負荷抑制(開口部形状の操作、深い庇の計画、Low-eガラスの採用、大面積のガラスへの遮熱フィルムの採用) LR1. 1.
- 自然エネルギー利用(太陽光発電パネルの採用、電気自動車急速充電器の設置) LR1. 2.
- LR2. 2. 非再生性資源の使用量削減(既存地下躯体存置による廃棄物・建設資材使用量の削減)
- 周辺環境への配慮(開口部形状の操作、ボリューム計画による日影影響の抑制、地域産木材の利用)