St.PLACE CITY

発注者

施工

設計·監理

No. 20-009-2014更新 新築 集合住宅

東レ建設(株) 名鉄不動産(株) 三洋ホームズ(株) 阪急不動産㈱ ㈱長谷エコーポレーション (株)長谷エコーポレーション

大阪エンジニアリング事業部 一級建築士事務所 (株)長谷エコーポレーション

カテゴリー

F リニューアル

A. 環境配慮デザイン B. 省エネ・省CO2技術 C. 各種制度活用 D. 評価技術/FB

I. 周辺・地域への配慮 J. 生物多様性 K. その他

F 長寿命化 G. 建物基本性能確保 H. 生産・施工との連携

## 中圧ガスによる防災対応型ガスコージェネレーション

### 中圧ガスとコージェネの融合・・・省エネと安全・安心・ 快適の両立

環境配慮、CO2削減など温暖化ガス排出削減への取 り組みが重要視される一方、阪神大震災発生から15 年が経過、高層マンションにおける震災対策も最重 要課題の一つだった。本案件は一般住宅で使用して いる都市ガス (低圧ガス) に比べ、より耐震性に優 れた中圧ガスを燃料とするガスコージエネレーショ ンシステムを採用、「環境配慮」と「震災対策」の2 つの課題に取り組んでいる。平時には発電した電力 をマンション全体に供給、排熱を温浴施設・受水槽予 熱の熱源に利用して環境に配慮し、震災時には同シ ステムから、給水ポンプ・EV・共用照明などに電力 供給と、温浴施設への熱供給が可能となる。また 「四季の風情を味わえるフォーシーズンフィール ド」をテーマに緑の効果を活かしたランドスケープ を計画し「生物環境の創出」への効果も期待できる。 構造躯体の耐震、免震技術の向上により地震発生時 に建物は万全でも、インフラ供給(電気・ガス・水 道) が遮断されている事態も予想される。このよう な状況下で入居者が少しでも自宅で安心して生活で



きる建物を目指し「電力」と「熱」の有効な利用方

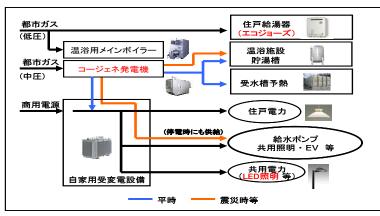
温浴施設

35.861 m<sup>2</sup>

建物データ

所在地

竣工年


敷地面積

延床面積

構浩

階数

セントプレイスシティ全景



システム図

### (平時)

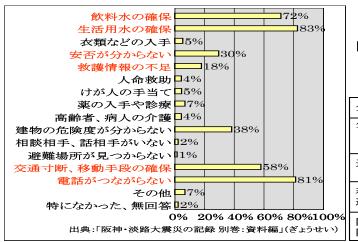
- ・低圧ガスを各住戸と温浴施設用メインボイラーに供給。
- ・中圧ガスはコージェネ発電機に供給し「電力」はマンション全体 に供給、「熱」は温浴施設の補助熱源と受水槽の予熱に利用。 (震災時)
- ・低圧ガスと電力の停止を想定、中圧ガスのみ供給されコージェネ 発電機から「電力」と「熱」を供給する。

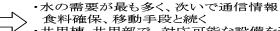
設計相当者 建築:古川俊一郎、玉木克也/構造:太田雄介/設備:別納俊夫、新田武久/外構:佐々木優

大阪府大阪市都島区善源寺町

1期RC造、2期SRC造、3期RC造

1期15階、2期19階、3期38階


1期2009年、2期2010年、3期2012年

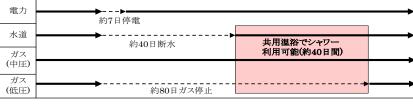

1期32,386㎡、2期47,175㎡、3期57,268㎡

CASBEE評価 B+ランク BEE=1.3 2004年度版 自治体提出 C棟 「BEE A棟1.2/B棟1.3]


### 災害時における「電力」の供給計画

阪神大震災時のアンケート調査から、震災時の不便さを解消する設備に発電電力を供給する計画とした。






・共用棟、共用部で、対応可能な設備を選択し 電力を供給する



### 災害時における「熱」の供給計画

地震発生直後、各インフラ(電力・水道・低圧ガス)が遮断されたと想定し、それぞれが復旧に要するまでの概ねの日数を一覧化 したものを 下図に示す。(データは各供給元のホームページより引用)水道復旧後、低圧ガスが復旧し各住戸で浴室が利用できる ようになるまでの約40日間、共用温浴室に「熱」を供給することにより、シャワーが利用できる計画とした。



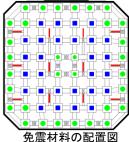


敷地内緑化 · 屋上緑化

# 季節のうつろいを身近に感じるランドスケープ

約11,000㎡に及ぶオープンスペースを積極的に緑化し、「四季の風 情を味わえるフォーシーズンズフィールド」をテーマに、美しい自 然の風景を創出した。シンボルツリーのケヤキや春を彩るサクラを はじめ、常緑樹・落葉樹・色とりどりの花々などを、風景としての 調和を考えながらバランスよく配置するとともに「新たな生物環境 の創出」への効果も期待できる。

### 屋上緑化


住棟の屋上をセダムマットによる緑化を行うことにより、ヒートア イランド対策への効果が期待できる。

### 免震構造

38階棟の上部構造と基礎との間には図に示す免震材料(天然ゴム系 積層ゴム支承+弾性すべり支承+オイルダンパー)を設置している。

### 高強度コンクリート、高強度鉄筋

設計基準強度が最大80N/mm<sup>2</sup>の高強度コンクリートと引張強さが 1,420N/mm<sup>2</sup>の高強度鉄筋を使用している。







### 主要な採用技術 (CASBEE準拠)

- 耐用性・信頼性(免震構造、中圧ガスコージェネレーションシステム、ステンレス給水プレハブ配管工法) Q2. 2.
- 生物環境の保全と創出(季節感を味わえるランドスケープ、屋上緑化)
- 設備システムの高効率化(エコジョーズ、LED照明) LR1. 3.
- 水資源保護(超節水型6L便器) LR2. 1.
- LR2. 2. 非再生性資源の使用量削減 (高強度コンクリート、高強度鉄筋)