Kajima Akasaka Annex of Kajima Corporation

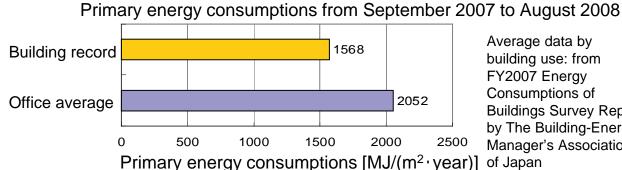
Building overview

Location:	Minato-ku, Tokyo
Start of constr.:	July 2005
Completion:	July 2007
Building type:	Office and rental apartments
structure	SRC construction
Total floor area:	33,517 m ²
Scale:	15-story structure

Concept and outline of environmentally sustainable design

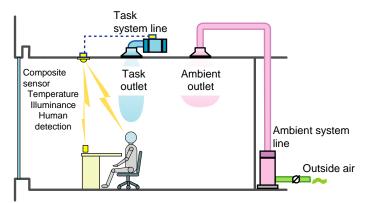
1. Flexibility

"Eco-module" to provide illumination and air conditioning where humans are present

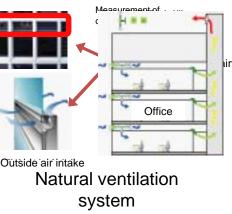

Optimum coordination control among solar radiation control, climate control, and illumination

Task and ambient AC available for general-purposed application with multiple building air conditioners Variable air-current outlet, "Universal Comfort," which provides soft personal air current

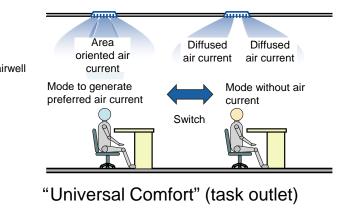
2. Sustainability


Building exterior design with high-performance glass and energy conservation

Hybrid AC coupled with natural ventilation in stairwells "B and OA Net System" integrating BA and OA networks




Average data by building use: from FY2007 Energy Consumptions of **Buildings Survey Report** by The Building-Energy Manager's Association of Japan



Wireless remote thermostat

()

CASBEE: Rank S; certified (BEE = 3.3) (complex use: office 4.0, residential 2.2)

"Techno Station" of Technical Research Institute of Obayashi Corporation

Building overview

Kiyose City, Tokyo
November 2009
September 2010
Research institute (office)
Steel construction
5,535 m ²
3FL

Concept and outline of environmentally sustainable design

Core base of intellectual creation which has attained both productivity increase and CO_2 reduction

1) Passive systems: reduction of loads

Eco-room system, "Peri-buffer" (perimeter zone) system, Natural ventilation system, natural water use system

2) Active systems: CO2 mitigation by applying new technologies

Latent and sensible heat-separate personal radiant new air-conditioning system, Thermal heat-using heat pump system, Well water hybrid system, hot and cold recycled water latent heat storage system, New lighting and air conditioning control using IC tags

3) Management system (operation): CO2 reduction through operation management

BEMS-based optimum management and feedback from commissioning

4) Management system (environmental tasks): CO2 mitigation through assistance for environmental tasks

CO₂ mitigation tasks assistance system through natural ventilation in office, Visualization system, information transmission and promotion

Passive systems Active system Eco-roof system Daylight-using skylight Natural ventilation of Use of waste heat and large office space heated air atural water-using syst Photovoltaic pr w lighting and ai Use of stormwater and BEMS-based optimum management High-efficiency heat pump module chille Feedback from commissioning and buffer air conditioning Use of water-based heat storage Great temperature differential water supplication CO₂ mitigation technologies Wind power generation • Wet paving of external area (water spraying Outside air cooling • LED lighting, CO₂ control, variable air volume Deployment of CO₂ mitigation technologie system) contro Environmental education activities etc Cool warm pit Use of cogeneration heat Solar heat-using hot water service New-type storage battery system, etc. Use of geo heat, etc. Low-rise building configuration to generate less conveyance energy North-south flat plane plan to admit preva wind into building Auditorium an showroom ----Typical office building Carbon credit equivalent to carbon footprint was purchased to achieve New main buildina carbon-neutral. CO_2 reduction 550

Reduced by about 300 t/year

CASBEE: Rank S certified (BEE = 7.6), PAL: 35.9% reduction, ERR: 41.9% reduction

New Head Office of Shimizu Corporation (under construction)

Building overview

Location:	Chuo-ku, Tokyo
Start of construction:	April 2009
Completion:	January 2012
Building type:	Office
Structure:	RC (partially, S structure)
Total floor area:	Approximately 51,800 m ²
Scale:	22F, 3BF, 1PH

Concept and outline of environmentally sustainable design

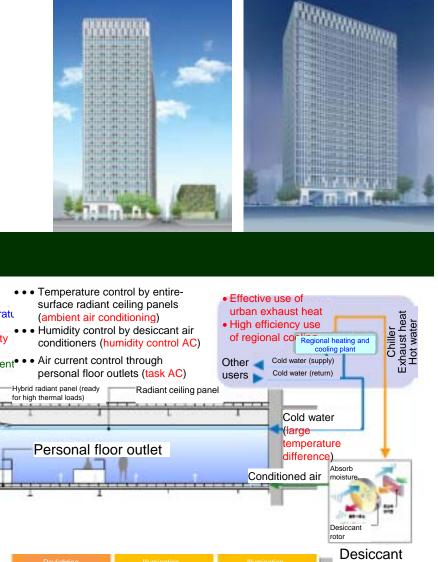
New RC super-high office tower; column-less office

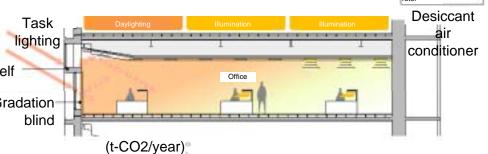
Hybrid panels of structure, exterior and environmental system (solar power panels and sun shading device).

AC system for intellectual productivity enhancement

Radiating base air conditioning and Personal air conditioning Earth- and human-friendly radiant AC system by new humidity control and perimeter control system

Lighting system making maximum use of PV power

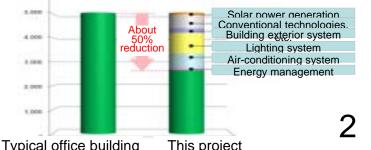

LED lighting in the whole building, Day-lighting system and personal lighting control Light shelf


PV panels about 2,000 m² on the perimeter generate lighting Gradation energy for the office space

Optimum operation control through central monitoring

The building operation is optimized by BEMS, load prediction, and simulation technology.

CASBEE: Rank S (BEE = 4.4), CO₂ during operation: 50% reduction



3.000

4,008

3.066

Z 008

Sapporo Building of Taisei Corporation

Building overview

Chuo-ku, Sapporo City, Hokkaido
July 2005
June 2006
Office, retail, and parking
RC, S
6,970 m ²
8FL, 1BF

Concept and outline of environmentally sustainable design

1) Minimum thermal load environment

External insulation and minimized window area

2) Northern area air conditioning

Natural energy utilization of free cooling, outside air cooling, and natural ventilation Energy reduction and load leveling by structure thermal storage & radiant heating and cooling

3) Day-lighting system T-Soleil

Comfort eco-void by automatic sun-tracking mirror, diffusion and radiation prism mirrors

4) High-efficiency operation based on BEMS

Energy-saving operation to ensure a steady increase in efficient energy performance

CASBEE: Rank S (BEE = 4.5 in 2006), ERR: 49% reduction (measurement in 2009)

Carbon offset is achieved through the use of carbon credit.

Building-structural thermal storage radiant heating and cooling system

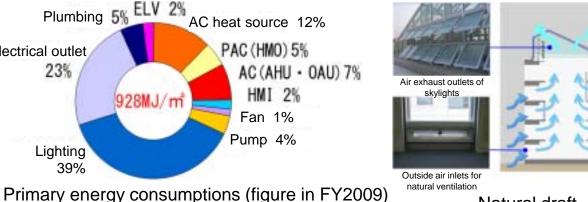
Plumbing 5% ELV 2% AC heat source 12%

928MJ/m

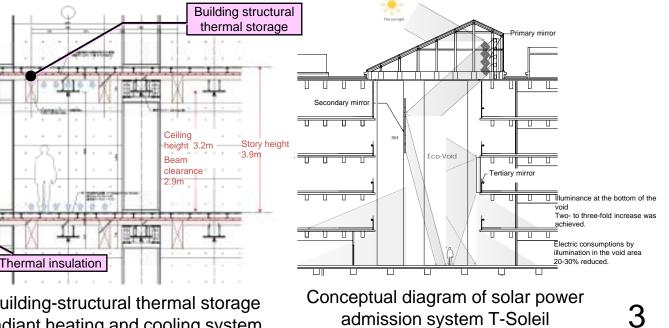
PAC (HMO) 5%

HMI 2%

Fan 1%


Pump 4%

AC (AHU · 0AU) 7%


Electrical outlet

23%

Lighting 39%

Natural draft

admission system T-Soleil

Global Headquarters of Nissan Motor Co., Ltd. designed by Takenaka Corporation

Building overview

Location:	Yokohama City
Start of constr.:	January 2007
Completion:	April 2009
Building type:	Office
Structure:	S, SRC
Total floor area:	92,100 m ²
Scale:	22FL, 2BF

Concept and outline of environmentally sustainable design

Creative office with "creation of intelligence" which delivers high environmental performance

1)Engineering of facade as an environmental device exterior louvers

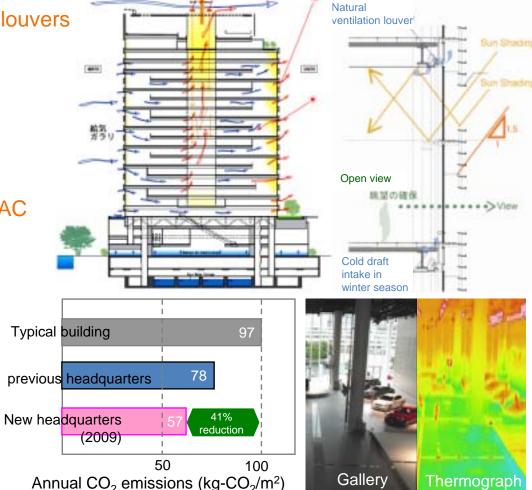
• The effective layout of exterior louvers blocks direct sun rays, materializing an office area commanding a panoramic view of the landscape all the time.

2)Headquarters functions under the theme of "creation of

intelligence" two-story atriums, light-well

• Development of the building plan where two-story atriums with a staircase are provided in the north and south sides of the building, inspiring agile actions and close communication among staff.

3)Energy conservation day-lighting, natural ventilation, task & ambient AC


- Day-lighting: the light shelf function of exterior louvers and daylight sensors
- Natural ventilation: Intake of outside air from exterior sashes and evacuation from the light well
- Task and ambient air conditioning: Adoption of under-floor air conditioning

4) Green roof for lower stories

- With the rooftop treated as a facade in a broad sense, the rooftops of the low-rise portion are covered with greenery.
- The rooftop is actively utilized to provide refreshing space for employees

5)Large-space gallery radiant air-conditioning

• Enhancement in comfort through residential air conditioning largely using radiant systems, and energy conservation by abatement in room temperature setting

CASBEE: Rank S (BEE = 5.6), PAL: 26% reduction, CO_2 : 41% reduction (2009 measurement)